## **NUCLEI**

1. Two nuclei have mass numbers in the ratio 1:8. What is the ratio of their nuclear radii?

Solution.
$$\frac{R_1}{R_d} = \left(\frac{A_1}{A_d}\right)^{1/3} = \left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}$$

- A radioactive nucleus A under goes a series of decays according to the following scheme:
  A ∝ A<sub>1</sub> β A<sub>2</sub> ∝ A<sub>3</sub> γ A<sub>4</sub>
  The mass number and atomic of A<sub>4</sub> are 172 and 69 respectively. What are these number of A?
  Solution. Let X = mass number =180 & Y = Atomic number = 72,
- (a)Draw the energy level diagram showing the emission of β-particles followed by γ-rays by a 2 Co nucleus.

(b) Plot the distribution of K.E of  $\beta$ -particles and state why the energy spectrum is continuous. **Solution**.



4. A nucleus  $\frac{2}{1}$  Ne undergoes  $\beta$ -decay and becomes  $\frac{2}{1}$  Na. Calculate the maximum K.E of electrons emitted assuming that the daughter nucleus and anti-neutrino carry negligible Mass of  $\frac{2}{1}$  Ne = 22.994466u K.E.  $\max \text{ of } \frac{2}{1}$  Na = 22.989770u 1 u = 931.5MeV/c<sup>2</sup>

Solution.

0.004696 × 931.5 **=4.37MeV**.

A neutron is absorbed by a <sup>a</sup>Li nucleus with the subsequent emission of an ∝ particle. Write the corresponding nuclear reaction. Calculate the energy released in this reaction.

 $\mathbf{G} = \begin{cases} m(\frac{6}{3}\text{Li}) = 6.015126 \text{ u} \\ m(\frac{6}{3}\text{Li}) = 1.0086654 \text{ u} \\ m(\frac{2}{4}\text{He}) = 4.0026044 \text{ u} \text{ and } m(\frac{2}{3}\text{H}) = 3.01\text{ u} \\ \mathbf{Solution.} \qquad \frac{6}{3}\mathbf{L} + \frac{1}{6}\mathbf{n} \rightarrow \frac{4}{3}\mathbf{H} + \frac{3}{3}\mathbf{H} \\ \text{Mass of reactants} = 6.015126 + 1.0086654 \\ = 7.0237914 \text{ u} \end{cases}$ 

=7.0126044 u Mass defect = Mass of reactance - Mass of product = 0.011187 u Energy released =  $0.011187 \times 931.6$ = 10.42MeV. 6. The binding energy of deutron (<sup>2</sup>H) and -particle( He) and 1.25 and 7.2 MeV/nucleon respectively. Which nucleus is more stable? Calculate binding energy per nucleon of § Fe. m(<sup>5</sup>/<sub>2</sub> Fe) = 55.934939 u Given  $\{ m(proton) = 1.007825 u \text{ Solution.} \}$ (m(neutron) = 1.008665 u -particle, have higher binding nucleon so it is more stable. Fe nucleus contains 26 protons and (56 - 26) neutrons. Mass of constituents of Fe nucleus  $= 26 \times 1.007825 + 30 \times 1.008665$ = 56.4634 u Mass defect ( m) = 56.4634 - 55.934939 0.528461 u Binding Energy(E) =  $0.528461 \times 931$ = 491.997 MeV. Calculate the binding energy per nucleon of Ca nucleus.  $\begin{cases} m(_2 \ Ca) = 39.962589 \ u \\ m_{_{\rm II}} = 1.008665 \ u \\ m_{_{\rm II}} = 1.007825 \ u \end{cases}$ Given: Solution. Mass of nucleons = 20×1.008665 + 20 × 1.007825 = 40.3298 u m = 40.3298 - 39.962589 = 0.367211 uE = 0.367211 × 931.5 = 342.05 MeV Binding energy per nucleon =  $\frac{\mathbb{E}}{\mathbb{A}} = \frac{3 \cdot 0}{4}$ 

Mass of product = 4.0026044 + 3.01

=**8.55 MeV**.

8. Calculate the amount of energy released during the -decay of

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ g \end{array} U & \begin{array}{c} 2 \\ g \end{array} Th + \frac{g}{2}He \\ m(\begin{array}{c} 2 \\ g \end{array} U) &= 238.05079 \ u \\ m(\begin{array}{c} 2 \\ g \end{array} Th) &= 234.04363 \ u \\ m(\begin{array}{c} 2 \\ g \end{array} He) &= 4.00260 \ u \\ \end{array} \\ 1u &= 931.5 MeV/c^2. \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} Solution. \\ m &= 238.05079 - 234.04363 - 4.00260 \ = \end{array} \end{array}$ 

0.00456 u

 $E = 0.00456 \times 931.5 = \textbf{4.24764 MeV}.$ 

## **NUCLEI**

**9.** A sample of radioactive substance has 10<sup>6</sup> radioactive nuclei. Its half-life time is 20s. How many nuclei will remain after 10s? **Solution**.

$$N = N_0 \left(\frac{1}{2}\right)^n$$
  

$$n = \frac{\text{ti} \quad 0 \ \text{d}}{\text{H} \quad \text{li}} = \frac{1}{2} = \frac{1}{2}$$
  

$$N = 10^6 \left(\frac{1}{2}\right)^{1/2} = \frac{1}{2} = 7.0 \times 1^{-5}$$

**10.** The half-life of radium is 1600 years. After how many years 25% radium block remains un decayed?

**Solution.** N = 25% of N<sub>0</sub> = 
$$\frac{N_{U}}{4}$$
  
 $\frac{N_{U}}{4} = N_{0} \left(\frac{1}{2}\right)^{T}$ ,  
n = 2,  $\frac{1}{T}$  = 2 or t = 2T = 2 × 1600

$$= 3200$$
 years

**11.** Express 16mg mass into equivalent energy in electron volt.

Solution. 
$$m = 16mg = 16 \times 10^{-3}g$$
  
=  $16 \times 10^{-6}kg$ ,  
 $E = mc^2 = 16 \times 10^{-6} \times (3 \times 10^{8})^{2}$   
=  $1.44 \times 10^{1} J = \frac{1.4 \times 1^{-1}}{1.6 \times 1^{-1}} eV = 9 \times 10^{-3} eV$ 

**12.** The half-life period of a radioactive substance is 30 days. What is the time taken for  $3/4^{\text{th}}$  of its original mass to disintegrate? **Solution.** Here

$$\frac{N_{u}-N}{N_{u}} = \frac{3}{4} \quad 0 \quad \frac{N}{N_{u}} = \frac{1}{4} \qquad \frac{N}{N_{u}} = \left(\frac{1}{2}\right)^{t/T}$$
$$\left(\frac{1}{2}\right)^{t/3} \qquad \frac{t}{3} = 2 \text{ or } t = 6 \quad d$$

**13.** A radioactive substance decays to  $1/32^{\text{th}}$  its initial activity in 25 days. Calculate its half life.

Solution. 
$$\frac{R}{R_{L}} = \left(\frac{1}{2}\right)^{L/T} \text{ or } \mathbf{y} = \left(\frac{1}{2}\right)^{2}$$
$$\left(\frac{1}{2}\right)^{5} = \left(\frac{1}{2}\right)^{2} / T \text{ or } \mathsf{T} = \frac{2}{5} = 5 \text{ d}$$

14. The half-life of U<sup>2</sup> against alpha decay is  $1.42 \times 10^{1}$  s. How many disintegrations per second occur in 1g of U<sup>2</sup> ? Avogadro number =  $6.02 \times 10^{23}$  mol<sup>-1</sup>. Solution. T =  $1.42 \times 10^{-1}$  s No of U<sup>2</sup> atoms in 1g. N =  $\frac{A}{A.m}$ =  $\frac{6.0 \times 1/2}{2}$  =  $2.53 \times 10^{2}$ But =  $\frac{0.6}{T}$  =  $\frac{0.6}{1.4 \times 1^{-1}}$ =  $4.88 \times 10^{-1}$  s<sup>-1</sup>  $\frac{d}{d}$  = N =  $4.88 \times 10^{-1} \times 2.53 \times 10^{2}$ =  $1.235 \times 1^{-1}$ 

## **PROPERTIES OF α,β AND γ-RAYS**

| FEATURE      | <b>g</b> -particle     | <b>B</b> - particle    | v- particle                  |
|--------------|------------------------|------------------------|------------------------------|
|              | Helium nucleus or      | st moving              | Photon                       |
|              | doubly ionized belium  | ectron                 | (FMW)                        |
| Identity     | atom ("He)             |                        | ( 12.101. 00 )               |
| Charge       | +2e                    | -e                     | zero                         |
| Mass         | 4m,                    | m                      | Mass less                    |
| Speed        | F                      | 1% to 99%              | Speed of                     |
| -            | 10 <sup>7</sup> m/s    | of speed of            | light                        |
|              |                        | light                  | C                            |
|              |                        |                        | 10000 (100                   |
| Penetration  | 1 (stopped by a paper) | 100 (100               | times of up                  |
| power        |                        | times of )             | to 30cm of                   |
|              |                        |                        | iron (or Pb)                 |
|              |                        |                        | sheet)                       |
| Ionisation   | 10000                  | 100                    | 1                            |
| power        | 02                     |                        |                              |
| Effect of    |                        |                        |                              |
| electric and |                        |                        |                              |
| magnetic     | Deflected              | Deflected              | Not deflected                |
| field.       | Y                      |                        |                              |
| Energy       | Line and discrete      | Continuous             | Line and                     |
| spectrum     |                        |                        | discrete                     |
| 0.           |                        |                        | Produced                     |
| Mutual       |                        |                        | photo electric               |
| interaction  | Produced heat          | Produced               | effect,                      |
| with         |                        | heat                   | Compton                      |
| matter       |                        |                        | effect, Pair                 |
|              |                        |                        | production                   |
| Equation     |                        | $\frac{1}{2}X - decav$ | $\frac{1}{2}X - \frac{1}{2}$ |
| of decay     | X - decay - Y + He     | Y + _e                 | AY +                         |
|              |                        | +                      | 2                            |

**UNITS OF RADIOACTIVITY**: The activity of a radioactive sample is generally expressed in terms of its rate of decay. In other words, the activity of a radioactive sample is expressed in terms of the number of disintegration per unit time. The radioactivity is measured in the following three units.

(i) The curie (Ci) : This was originally defined as the activity of 1g of radium in equilibrium with its by-products. But it is now defined as under : *The activity of a radioactive substance is said to be* one curie *if undergoes* 

 $3.7 \times 10^{11}$  disintegrations per second. 1 curie =  $3.7 \times 10^{11}$  disintegrations/s

(ii) The Rutherford (Rd) : *The activity of a radioactive substance is said to be one rutherford if it undergoes* 10<sup>th</sup> *disintegrations per second.* 

1rutherford =  $10^{II}$  disintegrations / s

(iii) The Becquerel (Bq) : The activity of a substance is said to be one becquerel if it undergoes 1 disintegration per second.1 becquerel = 1 disintegration/s

| $1 = 3.7 \times 1^{-4}r$ | $=$ 3.7 $\times$ 1 <sup>I</sup> H |
|--------------------------|-----------------------------------|
|--------------------------|-----------------------------------|

PLASMA3/5, SREET NO.1, NAFEES ROAD, JOGABAI EXT, NEW DELHI-110025.Ph-011 26988514

## **NUCLEI**

encohan physics and com osconstructures